
10/13/2004 BNL Instrumentation Division – Seminar 1/45

High Precision Sensor for High Values of Relative Humidity

(Based on Polymer-Coated STW Resonant Device)

P. Bruno1, G. Cicala2, F. Corsi3, A. Dragone3, A.M. Losacco4

1Dipartimento di Chimica - Università di Bari
2IMIP-CNR w/o Dipartimento di Chimica - Università di Bari

3Politecnico di Bari – Dipartimento di Elettrotecnica ed Elettronica
4Centro Laser S.C.R.L. - Valenzano

DIPARTIMENTO DI CHIMICA
UNIVERSITA’ DI BARI

BARI



10/13/2004 BNL Instrumentation Division – Seminar 2/45

Outline

• Why a sensor for high relative humidity ranges? 
• How does our sensor work?

– The acoustic device
– The sensing mechanism

• Experiment set-up
• Results
• Front-end electronics
• Conclusions
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Why high relative humidity ranges?

Fog dissipation systems by nitrogen
Actual monitoring systems

to be optimized in size and cost

A new high relative 
humidity range sensor 

based on polymer-coated 
STW resonant device
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Block diagram of the automatic fog dissipation system installed
and tested at the Venezia Est tollhouse, Italy 

(Central Aerological Observatory, Russia  and Autovie Venete, Italy)

A fog dissipation system
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An example

Bankova, Koloskov, Krasnoskaya, Sergeeev, Cherinkov, Pani, Ferrante,
Proceedings of  the 8th WMO Scientific Conference on Weather Modification, Casablanca (7-12/4/2003)
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Humidity sensors
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Relations between Relative Humidity and Dew Point

Humidity sensors

Direct

Indirect
Measure of the Dew Point
i.e. the temperature to which air must be cooled at a 
constant pressure to become saturated and condense 
upon a solid surface.

Measure of the Relative Humidity
i.e. The amount of water vapor in the atmosphere, 
expressed as a percentage of the maximum quantity 
that could be present at a given temperature. 
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Commercial Humidity sensors

Resistive
(direct)

Capacitive
(direct)

Abs error 2%, Insensitive above 90%, 
Response Time 10s-30s (63% RH step)

Abs error 2%, Low sensitivity above 90% 
Response Time 30s-60s (63% RH step)
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Commercial Humidity sensors

Abs error 0.2°C, Response Time 10s-30s (63% RH step)

Chilled Mirror
(Indirect)
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Outline

• A sensor for high relative humidity ranges
• How does our sensor work? 

– The acoustic device
– The sensing mechanism

• Experiment set-up
• Results
• Front-end electronics
• Conclusions
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How does it work?

a. The polymeric film absorbs water molecules. 
b. The increase of the load on the device surface turns into a decrease of 

the STW propagation velocity.
c. Down-shift of the device resonance frequency.
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Acoustic Modes

SAW STW
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Substrates

Piezoelectric Materials

• LiNbO3
• LiTaO3
• SiO2

AT cut Quartz
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Temperature dependence

Quartz AT cut temperature dependence
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v p           w            Nt Nr       Nh fo
[m/s]          [µm]  [µm/2p] [MHz]

5101.471 8 35 80+1/2 480 99 316.36

Resonator LayoutResonator Layout
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Some Theory

Consider a substrate with a periodic grating of period p. An incident wave, with a wavelenght double the period p, shows a strong 
attenuation.

p2=λ
In this particular condition, reflected waves on each strip of the periodic grating are with the same phase and sum toghether. 
This leads, when the number of strips is sufficient to a total reflection and this is what is called the “stopband” phenomena. 
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Waves propagation on periodically perturbed substrates

Bragg condition ⇒ Strong reflection

In order to model this propagation phenomena, we need to start from the classic prpagation equation i.e. the Mathieu equation. 
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Some Theory
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Assuming a weak perturbation (           ) and limiting the analysis near the Bragg condition (             ), it could be verified that the 
harmonics n=0 and n=-1 are dominant. Furthermore, the two harmonics are coupled; they have the same propagation constant but 
opposite verse: 
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The general solution is the sum of an infinite number of harmonics called the Floquet harmonics:

In order to get the guided modes (values of      corresponding to waves that propagate in the matter) we need to search for the 
eigenvalues of the system of equations obtained substituting the general solution in the Mathieu, i.e. we have to solve the “dispersion 
equation”. This system has unfortunately an infinite number of equation. Thus, we need to approximate the general solution with a 
finite number of terms. 

Coupled Modes Theory (COM)

Thus, we could simplify imposing:  

⇒
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Some Theory
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The dispersion equation

Vanishing waves
“Stopband”
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Some Theory
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The dispersion equation for the STW modes

Plessky, Abbot and Hashimoto

V. Plessky – J. Koskela, “Coupling of mode analysis of 
SAW devices”, International Journal of High Speed 
Electronics and Systems 

V. Plessky, “A Two Parameter COM model for Shear 
Horizontal Type Propagation in Periodic Gratings”, Proc. 
IEEE Ultrason. Symp. (1993) 195-200 

B. Abbot - K. Hashimoto, “A Coupling of modes 
Formalism for Surface Transverse Wave Devices”, Proc. 
IEEE Ultrason. Symp. (1995) 239-245 
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Some Theory
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The simulator
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Nr Nt Nh w a fo

[MHz]

8 µm N 480 161 25 35 50 316

8 µm EX 480 161 99 35 50 316

8 µm EX3 480 161 400 35 50 316

10 µm N 500 161 25 35 50 253

10 µm EX 500 161 99 35 50 253

4.8 µm N 450 181 25 30 50 520

4.8 µm EX 600 201 99 30 50 520

3.2 µm N 450 181 25 30 50 782

3.2 µm EX 600 221 99 30 50 782

Designed patterns

Resonator Layout
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Resonator Layout



10/13/2004 BNL Instrumentation Division – Seminar 25/45

Particular
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Frequency Response
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Comparison of the results
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Polymers

PECVD

430 nm30 min250 W300 mTorrCH4(5%)/Ara-C:H  dev.1

320 nm10 min100 W50 mTorrHMDSO(33%)/O2HMDSO

ThicknessTimePRFPressureGas mixture

Deposition Parameters

440 nm30 min250 W300 mTorrCH4(21.5%)/Ara-C:H  dev.2

380 nm30 min250 W300 mTorrCH4(50%)/Ara-C:H  dev.3

340 nm30 min250 W300 mTorrCH4(90%)/Ara-C:H  dev.4

350 nm30 min250 W300 mTorrCH4(100%)a-C:H  dev.5
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Prototype
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Outline

• A sensor for high relative humidity ranges
• How does our sensor work?

– The acoustic device
– The sensing mechanism

• Experiment set-up
• Results
• Front-end electronics
• Conclusions
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Experiment set-up

• Climatic Chamber Mazzali Climatest C 330 G5
• Agilent 8714ET RF network analyzer
• Solomat MPM 500e chilled mirror sensor equipped with 355RH probe
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Outline

• A sensor for high relative humidity ranges
• How does our sensor work?

– The acoustic device
– The sensing mechanism

• Experiment set-up
• Results
• Front-end electronics
• Conclusions
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Resonance Frequency Down-shift
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HFC (Humidity Frequency Characteristic)

Sensitivity

a-C:H
Mean sensitivity 7.5 ppm/%RH
(absolute freq. shift of 2.25 kHz/%RH)

HMDSO
Mean sensitivity 15 ppm/%RH
(absolute freq. shift of 4.5 kHz/%RH)
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Changing CH4 percentages

CH4(5%)/Ara-C:H  dev.1

CH4(21.5%)/Ara-C:H  dev.2

CH4(50%)/Ara-C:H  dev.3

CH4(90%)/Ara-C:H  dev.4

CH4(100%)a-C:H  dev.5

HFC (Humidity Frequency Characteristic)

CH4 percentages
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Changing CH4 percentages
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HFC hysteresis

Hysteresis of HMDSO coated STW resonator Hysteresis of a-C:H coated STW resonator

HMDSO a-C:H
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Temperature dependence

TFC characteristics at 60% RH
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Response Time

Response time to a pulse of 90% RH
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Outline

• A sensor for high relative humidity ranges
• How does our sensor work?

– The acoustic device
– The sensing mechanism

• Experiment set-up
• Results
• Front-end electronics
• Conclusions
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Electronic Front-end
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Outline

• A sensor for high relative humidity ranges
• How does our sensor work?

– The acoustic device
– The sensing mechanism

• Experiment set-up
• Results
• Front-end electronics
• Conclusions



10/13/2004 BNL Instrumentation Division – Seminar 43/45

Conclusions

a. Polymer-coated surface transverse acoustic wave humidity sensors have been 
successfully fabricated and characterized. 

b. Different kinds of polymeric films, HMDSO and a-C:H, deposited at room temperature 
by PECVD, have been tested and their sensing characteristics have been compared.

c. At room temperature average sensitivities of 15 ppm/%RH and 7.5 ppm/%RH have 
been obtained for HMDSO and a-C:H films, respectively, which have been found to be 
about one order of magnitude and three times higher than results reported in literature.

d. The a-C:H coated STW resonator features a fast response time (10s) and a linear and 
hysteresis-free HFC characteristics, in spite of a lower sensitivity and a higher 
temperature dependence with respect to HMDSO coated one.

e. A compensation by signal processor controlled oscillator system is needed to reduce 
temperature dependence.
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Thank you, very much 
for your attention.


